content_cookies111:string(1578) "{"id":25506,"content_cookies":null,"user_header":{"SERVER_SOFTWARE":"Apache\/2.4.52 (Debian)","REQUEST_URI":"\/iu35-en\/haitham-hassanieh\/","REDIRECT_STATUS":"200","HTTP_X_FORWARDED_PROTO":"https","HTTP_CONNECTION":"upgrade","HTTP_HOST":"technologyreview.ae","HTTP_CF_CONNECTING_IP":"18.232.179.37","HTTP_CF_IPCOUNTRY":"US","HTTP_ACCEPT_ENCODING":"gzip","HTTP_CF_RAY":"80e3a70b380d3b00-IAD","HTTP_CF_VISITOR":"{\\\"scheme\\\":\\\"https\\\"}","HTTP_USER_AGENT":"CCBot\/2.0 (https:\/\/commoncrawl.org\/faq\/)","HTTP_ACCEPT":"text\/html,application\/xhtml+xml,application\/xml;q=0.9,*\/*;q=0.8","HTTP_ACCEPT_LANGUAGE":"en-US,en;q=0.5","HTTP_CDN_LOOP":"cloudflare","PATH":"\/usr\/local\/sbin:\/usr\/local\/bin:\/usr\/sbin:\/usr\/bin:\/sbin:\/bin","SERVER_SIGNATURE":"Apache\/2.4.52 (Debian) Server at technologyreview.ae Port 80<\/address>\n","SERVER_NAME":"technologyreview.ae","SERVER_ADDR":"172.18.0.9","SERVER_PORT":"80","REMOTE_ADDR":"18.232.179.37","DOCUMENT_ROOT":"\/var\/www\/html","REQUEST_SCHEME":"http","CONTEXT_PREFIX":"","CONTEXT_DOCUMENT_ROOT":"\/var\/www\/html","SERVER_ADMIN":"webmaster@localhost","SCRIPT_FILENAME":"\/var\/www\/html\/index.php","REMOTE_PORT":"48994","REDIRECT_URL":"\/iu35-en\/haitham-hassanieh\/","GATEWAY_INTERFACE":"CGI\/1.1","SERVER_PROTOCOL":"HTTP\/1.1","REQUEST_METHOD":"GET","QUERY_STRING":"","SCRIPT_NAME":"\/index.php","PHP_SELF":"\/index.php","REQUEST_TIME_FLOAT":1695984493.546268,"REQUEST_TIME":1695984493,"argv":[],"argc":0,"HTTPS":"on"},"user_ip":"18.232.179.37","user_agent":"CCBot\/2.0 (https:\/\/commoncrawl.org\/faq\/)"}"
Assistant Professor at University of Illinois Urbana-Champaign
STATS:
AGE:
33
NATIONALITY:
Lebanon
EDUCATION:
Assistant Professor at University of Illinois Urbana-Champaign
Haitham Hassanieh
Assistant Professor at University of Illinois Urbana-Champaign
Haitham’s research focuses on building internet-of-things (IoT) systems and technologies that deliver new capabilities and applications that were never possible before. His inventions range from new sensors that enable self-driving cars to see through fog and finding surprising ways to hack (and secure) smart home assistants like Google Home and Alexa with inaudible sound. He has also developed the world’s fastest algorithm for computing the Fourier Transform, making a major leap in the 50-year old algorithms which are used across almost all computing applications, ranging from medical imaging to GPS. This work formed the core of his PhD thesis, earning him the ACM Dissertation Award (and the Sprowls award for the best doctoral dissertation in computer science at MIT), and it was selected by Technology Review as one of the world’s top 10 breakthrough technologies in 2012.
His newest invention: a sensor that enables self-driving cars to see through fog and work in adverse weather conditions. Specifically, today’s self-driving cars rely on vision sensors (like cameras and LIDARS) and thus can only see and navigate in good visibility. However, if the visibility is low (e.g., in fog or bad weather conditions), today’s cars cannot see or navigate. Indeed, this has led to multiple incidents of self-driving cars crashing in bad weather conditions. To overcome this problem, Haitham led a team of researchers that came up with a completely different solution. Their solution relies on millimeter-wave radars. Unlike visible light, millimeter-wave radars can traverse fog and rain, and reflect off other objects in the environment before coming back to the car. Prof. Hassanieh’s sensor captures these reflections and uses them to image obstacles (e.g., other cars) in order to avoid accidents. To do this, they design a first-of-its-kind AI (Artificial Intelligence) that can image and recognize cars to avoid occlusions. Their invention has been published in the world’s most selective venue for computer vision research, and the following video shows the applications of this system.
Haitham’s research focuses on building internet-of-things (IoT) systems and technologies that deliver new capabilities and applications that were never possible before. His inventions range from new sensors that enable self-driving cars to see through fog and finding surprising ways to hack (and secure) smart home assistants like Google Home and Alexa with inaudible sound. He has also developed the world’s fastest algorithm for computing the Fourier Transform, making a major leap in the 50-year old algorithms which are used across almost all computing applications, ranging from medical imaging to GPS. This work formed the core of his PhD thesis, earning him the ACM Dissertation Award (and the Sprowls award for the best doctoral dissertation in computer science at MIT), and it was selected by Technology Review as one of the world’s top 10 breakthrough technologies in 2012.
His newest invention: a sensor that enables self-driving cars to see through fog and work in adverse weather conditions. Specifically, today’s self-driving cars rely on vision sensors (like cameras and LIDARS) and thus can only see and navigate in good visibility. However, if the visibility is low (e.g., in fog or bad weather conditions), today’s cars cannot see or navigate. Indeed, this has led to multiple incidents of self-driving cars crashing in bad weather conditions. To overcome this problem, Haitham led a team of researchers that came up with a completely different solution. Their solution relies on millimeter-wave radars. Unlike visible light, millimeter-wave radars can traverse fog and rain, and reflect off other objects in the environment before coming back to the car. Prof. Hassanieh’s sensor captures these reflections and uses them to image obstacles (e.g., other cars) in order to avoid accidents. To do this, they design a first-of-its-kind AI (Artificial Intelligence) that can image and recognize cars to avoid occlusions. Their invention has been published in the world’s most selective venue for computer vision research, and the following video shows the applications of this system.
نستخدم ملفات تعريف الارتباط لتحسين تجربتك، استمرار استخدامك للموقع يعني موافقتك على ذلك. سياسة الخصوصيةأوافقX
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.